
SmartKey Smart Contract Audit

RED4SEC Page 1

Smart Contract Security Audit

SmartKey

2021-02-12

SmartKey Smart Contract Audit

RED4SEC Page 2

Content

Introduction ... 3

Disclaimer .. 3

Scope .. 3

Results Overview .. 4

Recommendations .. 4

ERC20 Approval Race Condition .. 4

Outdated Compiler Version ... 5

Use of Require statement without reason message 5

GAS Optimization .. 6

SmartKey Smart Contract Audit

RED4SEC Page 3

Introduction

SmartKey is the missing part of the puzzle that connects the world of

decentralized finance (DeFi) and blockchain with the world of physical assets.

They are the first working platform that allows you to combine physical values

and assets (Blockchain Of Things) with DeFi projects operating on the Ethereum

and Waves blockchain.

As requested by SmartKey and as part of the vulnerability review and

management process, Red4Sec has been asked to perform a security code audit

to evaluate the security of its smart contract.

Disclaimer

This document only represents the results of the code audit conducted by

Red4Sec Cybersecurity and should not be used in any way to make investment

decisions or as investment advice on a project.

Likewise, the report should not be considered neither "endorsement" nor

"disapproval" of the guarantee of the correct business model of the analyzed

project.

Scope

The detailed audit below has been based on the contract deployed on Ethereum

MainNet address 0x06A01a4d579479Dd5D884EBf61A31727A3d8D442.

SmartKey Token Smart Contract

• Token.sol

o SHA256:

AA791156A89126A56C06AD0EB538C8EB99FAA510819A012B47E010FA82888F1A

https://etherscan.io/address/0x06A01a4d579479Dd5D884EBf61A31727A3d8D442

SmartKey Smart Contract Audit

RED4SEC Page 4

Results Overview

To this date, 12th of February 2020, the general conclusion resulting from the

conducted audit is that SmartKeys’s smart contract is secure and does not

present any known vulnerabilities that could compromise the security of the

users.

Nevertheless, Red4Sec has found some minor potential improvements, these do

not pose any risk and we have classified such issues as informative only, but they

will help SmartKey to continue to improve the security and quality of its

developments.

The current implementation of SafeKey, guarantees the transparency and

decentralization of the token by not containing methods that allow blocking

balances or altering the total supply. SafeKey only contains the necessary

methods for the correct operation of the ERC 20 standard.

Recommendations

ERC20 Approval Race Condition

SmartKey token does not have any sort of protection against the well-known

attack “Multiple Withdrawal Attack”1 on the approve/transferFrom methods of the

ERC20 standard.

Although this attack poses a limited risk in specific situations, it is worth

mentioning to consider it for possible future operations.

There are a few solutions to mitigate this front running such as, to first reduce

the spender's allowance to 0 and set the desired value afterwards; another

solution could the one that Open Zeppelin offers, where the non-standard

decreaseAllowance and increaseAllowance functions have been added to mitigate

these well-known issues, involving setting allowances.

1 https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM

https://docs.openzeppelin.com/contracts/2.x/api/token/erc20#ERC20-decreaseAllowance-address-uint256-
https://docs.openzeppelin.com/contracts/2.x/api/token/erc20#ERC20-increaseAllowance-address-uint256-
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit

SmartKey Smart Contract Audit

RED4SEC Page 5

Outdated Compiler Version

Solc frequently launches new versions of the compiler and using an outdated

version of the compiler can be problematic, especially if there are errors that have

been made public or known vulnerabilities that affect this version.

We have detected that the audited contract sets the following version of Solidity

pragma ^0.5.0.

It is always of good policy to use the most up to date version of the pragma.

Use of Require statement without reason message

Throughout the audit, it was verified that the reason message is not specified in

some require methods; this will give the user more information and consequently,

make it more user friendly.

An example of this issue can be found in: SmartKey.sol:26 even though the same

modus operandi can be found through all the smart contract.

This functionality is compatible since 0.4.22 release and the contract were

compiled with the 0.5.16 version; this will result in compatibility with this feature.

SmartKey Smart Contract Audit

RED4SEC Page 6

GAS Optimization

Software optimization is the process of modifying a software system to make an

aspect of it work more efficiently or use less resources. This premise must be

applied to smart contracts as well, so that they execute faster or to save GAS.

On Ethereum blockchain, GAS is an execution fee which is used to compensate

miners for the computational resources required to power smart contracts. If the

network usage is increasing, so will the value of GAS optimization.

These are some of the requirements that must be met to reduce GAS

consumption:

• Short-circuiting.

• Remove redundant or dead code.
• Delete unnecessary libraries.

• Explicit function visibility.
• Use of proper data types.

• Use hard-coded CONSTANT instead of state variables.
• Avoid expensive operations in a loop.

• Pay special attention to mathematical operations and comparisons.

Executions Cost

The use of constants is recommended as long as the variables are never to be

modified. In this case the variables “name”, “symbol” and “decimals” of the

SmartKey’s contract should be declared as constants since they would not be

necessary to access the storage and to read the content of these variables,

therefore, the execution cost is much lower.

SmartKey Smart Contract Audit

RED4SEC Page 7

Invest in Security, invest in your future

